skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schweikert, Lorian E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Visual ecology, the study of how animals acquire and respond to visual information in nature, has grown rapidly over the past few decades. Research in this field has transformed our understanding of fundamental processes, such as the neurobiological basis of behavior and the diversification of species through sensory drive. The recent growth in the field has been accompanied by leaps in our understanding of the diversity of visual systems and in the development of novel technologies and techniques (for example, those allowing us to measure scenes and signals). With such growth, however, it is more important than ever to integrate wide perspectives and expertise to move the field forward in the most productive way. To that end, in summer 2024, 30 visual ecologists from around the world – spanning all career stages – met to discuss the state of the field. From that meeting, we identified two broad emerging themes in the study of visual ecology. (1) Can we further ‘step inside’ the perceptual experience of a non-human animal? (2) Can foundational ‘rules’ of vision and visual stimuli be identified? Although large questions such as these can feel unanswerable, this is where some of the most exciting discoveries in visual ecology remain to be made. Here, we outline eight relevant areas of research and identify ways in which researchers can bring us closer to answering these complex questions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Synopsis Locomotion is a hallmark of organisms which has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard; therefore, sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs, and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g., gating) and weighting—which are inherent computations of spiking neurons—underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion. 
    more » « less
  3. null (Ed.)